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Conditionally averaged vorticity field and turbulence modeling
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The conditionally averaged vorticity (CAV) field with fixed vorticity in a point is obtained from a
direct numerical simulation of isotropic turbulence. The characteristic attenuation scale for the twisting
and hyperboloidal CAV components is found to be of order ten times greater than the Kolmogorov mi-
croscale. A simple analytical model qualitatively agrees with the obtained CAV. For turbulent free-
surface flows, the twisting part of CAV is expected to connect to the free surface. An alternative type of
subgrid-scale modeling of turbulence, based on CAYV, is suggested for the large-eddy simulations.

PACS number(s): 47.27.Gs

I. INTRODUCTION

The major goal of the theory of turbulence as driven by
various engineering disciplines (including energy, naval,
aerospace, and environmental) is to reduce the enormous
number of degrees of freedom in turbulent flows to a level
that is manageable by computer simulations. In order to
do this properly, we have to understand what kind of sta-
tistical structures are naturally created in small-scale tur-
bulent motion and by a careful subgrid-scale analysis ad-
just numerics to model these structures.

The most important effect (physically and numerically)
in three-dimensional motion is vortex stretching, which is
statistically balanced with viscous smoothing [1-5]. The
corresponding statistical structure is represented by the
conditionally averaged vorticity field (CAV) [3] as func-
tion of distance r from a point with fixed vorticity o:

Qi(r,0)=[f1()]7" [0} f,(r,0,0)d%" , (1)

where r=x'—x and f, and f, are one-point and two-
point probability density functions (PDF’s) of the vortici-
ty field. For locally isotropic turbulence, f; depends only
on absolute value of vorticity w. For statistically nonsta-
tionary and nonhomogeneous turbulence all characteris-
tics may parametrically depend on time and absolute po-
sition x.

Conditional averaging of the Navier-Stokes equations
(NSE), written in terms of vorticity field with fixed vorti-
city in a point, transforms the major nonlinear stretching
term into a linear term [2,3]. This allows, in particular,
an analytical study of CAV. We note that the condition-
ally averaged NSE with fixed vorticity in » points corre-
sponds to a hierarchy of ‘“kinetic”” equations for the n-
point PDF [2,3].

Based on the local isotropy of turbulence and the
solenoidality of the vorticity field, we have a general ex-
pression for the Fourier transform of (1) [3]:

ﬂi(k,m)=g(k,a),y)(ai—pni)-i-h(k,a),p)eijkajnk ,
()

where 0;,=w;0" !, n,=k;k1, u=o;n;, g(—u)=g(u),
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and A(—p)=—h(u). k is the wave number vector with
unit vector n, o is the unit vector of fixed vorticity, u is
the scalar product of these unit vectors, and ¢, is the
unit antisymmetric tensor. Scalar g is a symmetric func-
tion of u, and h is antisymmetric. Scalar h represents
twisting of vortex lines, which is necessary for the statisti-
cal balance between vortex stretching and viscous
smoothing for large Reynolds numbers [2-6].
(Re=Lv /v, where L is the external scale, v is the charac-
teristic velocity, and v is the molecular viscosity.) This
statistically important twist probably contributes to the
helically shaped explosion of “vortex strings” that occurs
when vortex tubes become unstable [4,7].

II. CONDITIONAL BALANCE OF VORTICITY

Conditional averaging of NSE leads to conditional bal-
ance of vorticity [3,5]:

dw ov;
92:(6!—3)0), alw,t)=—0,0 ,

ot axk

Blw,t)=—vAw,0; .

(3)

Here the overbar denotes conditional averaging with
fixed w, a is the conditionally averaged rate of vortex
stretching, 3 represents viscous smoothing, and v; is the
velocity field. We note that conditional averaging gen-
erally does not commute with spatial and temporal
derivatives [3]. The convective term gives no contribu-
tion to the balance (3) for locally isotropic turbulence,
and generally its contribution is small for large Reynolds
numbers [3]. By expressing velocity in terms of an in-
tegral over vorticity for an incompressible fluid and after
simple manipulations, we have [3]:

a=—eyn0; [ n;0pd’k=— [ p(1—p>hd’k )
Bo=va,; [ kK20,d’k=v [ kX(1—p)gd’k . (5)
We see that vortex stretching is linked with the twisting
of vortex lines, as represented by the scalar 4. It was pre-

dicted [8,3] for large Reynolds numbers that the condi-
tionally averaged vortex stretching term is balanced with
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viscous smoothing term: a(w,t)=pf(w,t). This predic-
tion was confirmed recently [5] by direct numerical simu-
lation (DNS) that revealed an exponential behavior in the
vortex stretching term:

a=0.130, exp(0.160/w,), 0:={w?)=c/v. (©6)

Here ¢ is the mean rate of the energy dissipation and nu-
merical coefficients in (6) are the same for the range
51.8<R, <79.9, where R, ~V'Re is the Reynolds num-
ber, based on the Taylor microscale.

The conditional balance (3) is more informative than
the traditional unconditional balance:

10 .2 =<& >_ (

2

) . )

Here { ) means unconditional statistical averaging. If we
multiply (3) by wp(w,t), where p =4mw?f, is the PDF of
the vorticity magnitude, and integrate over w, we recover
(7). Details of conditional and unconditional averaging
are in Ref. [3]. It was found [5] that
plo)~exp(—1.80/w,) and exp(—2.lw/w,) for
R, =79.9 and 51.8, respectively for o /w, =0.5. The ex-
perimentally measured attenuation
plw)~exp(—2.56w/w,) is more rapid than DNS predic-
tions probably because of the limited range of w that has
been measured [9]. The negative exponent in p(w) is of

dw;

axk

R.C. Y. MUI, D. G. DOMMERMUTH, AND E. A. NOVIKOV 53

order of magnitude larger than the positive exponent in
al(w), so the finite production of enstrophy is insured.
We note that the energy spectra as predicted by DNS
agrees very well with experimental measurements [5].
The coefficients a(w) and B(w) provide partial informa-
tion about the CAYV field. The next step is to obtain the
whole field, which requires more extensive work that is
described in the next section.

III. CONDITIONALLY AVERAGED
VORTICITY FIELD

The inverse Fourier transform of (2) gives
Q,(r,0)=a(r,0,7)0;+b(r,0,7)A;+c(r,oy)r, ,
where
Y=pio, pi=rir ', M=(p;—yo i,
ri=(1—y)'72, T =€ 0 Ay ,
a(—y)=a(y), b(—y)=—bly), c(—y)=—cly).

The unit vectors o, A, and 7 are orthogonal. The scalars
a and b are not independent because of a condition that is
imposed by solenoidality:

a(_li/ar,-=0 N
)

r(ya,+yb,)+v,y,a,—vb,)=0,

FIG. 1. Conditionally averaged vorticity field. The colors indicate vorticity magnitude. The blue color corresponds to =0 and
the red color corresponds to 2 =wy. The arrows indicate the direction of the vortex lines.
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FIG. 2. Scalar coefficients (a,b,c) as func-
tions of radial distance. O=arccos(y)=45°
and the radial distance is normalized by the
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where subscripts indicate differentiation. These two sca-
lars are expressed in terms of one scalar g from (2) and
scalar c is expressed in terms of A:

a= [ explik-r)(1—p*)gd’k ,
b=—1yy, [ explik-r)(39?—1)gd*k

Y71
3y2—1
c=1yy, [ explik-n)(39*—Dhp~'d%k ,

[ explik-)(3u?—1)gd’k , (10)

where 4=n,p;.

In order to extract information about these scalars
from a DNS data set S of the vorticity field, we first have
to determine a subset S,ES, corresponding to grid
points with magnitude of vorticity in a bin centered
around @. Summation over all (say, n) such bins gives the
whole set: ¥ §,=S. Next, we choose one point x ES .
At this point we will have a certain vorticity vector o
with a known magnitude in the chosen bin. From all oth-
er points x’ES we choose a subset S, ,(x,®) of points
with distances » = |x’—x| in a certain r bin and ¥y =po in
a y bin. This subset depends on the original point x and
the corresponding @. At every point x'E€S, (x,0) we
will have certain vorticity vector ®’. Now we average o'
over all points x'E€S, ,(x,w). By projecting the resulting

vorticity field on vectors o, A, and 7, we will have a sam-
ple of the scalars (a,b,c), which is still dependent on
(x,0). Additional averaging over all x €S, gives the
CAYV field (8). The ergodicity assumption is utilized here
by replacing ensemble averaging (1) by space averaging.
The DNS of isotropic turbulence is described in Ref. [5].

A CAY field that is obtained by this procedure from
DNS data is presented in Fig. 1 for a magnitude of fixed
vorticity w=w, and a Taylor Reynolds number
R, =72.4. The twisting part of vorticity corresponds to
two distributed coaxial vortex rings with opposite signs
of vorticity, producing stretching of the central fluid ele-
ment in the direction of @. The hyperboloidal part of
vorticity arises due to viscous smoothing. The charac-
teristic attenuation scale for the twisting and hyper-
boloidal CAV components is order ten times greater than
the Kolmogorov microscale, n=(+*/¢)*/*. For turbulent
free-surface flows, the twisting part of the CAV field is
expected to connect to the free surface. This conjecture
is based on experience with laminar and quasilaminar
vortex reconnections with free surface [10].

The general topology of this CAYV field is basically the
same as in a simple analytical model:

glk,0,u)=3vw/2e)d(k) ,

(11)
h(k,0,u)=—(15v’k*u/2e)¢(k) ,
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FIG. 3. Scalar coefficients (a,b,c) as func-
tions of angles. O6=arccos(y) and r/n=11.92.
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where ¢(k)=E(k)/27={Q,0;) and E (k) is the energy
spectrum. We note that for the Gaussian probability dis-
tribution of the vorticity field, the function g is the same
as in the model (11), but # =0. The model was obtained
[3] under assumption that a(w)=const. This assumption
is not correct for the DNS data (6). However, the
coefficient in the exponent in (6) is not big (~0.16) and a
qualitative agreement exists with DNS data, but certain
details are different. These differences are reflected in the
series of plots (Figs. 2 and 3) for the scalars (a,b,c) that
are presented for two values of fixed vorticity: o=,
and 2w,. The agreement between the model and DNS is
better for scalar a than for scalars b and ¢. The functions
are smooth and we hope in future to get a simple analyti-
cal description of CAV that is consistent with the
Navier-Stokes equations and with all necessary condi-
tions [3]. In particular, we need an analytical description
for the large-eddy simulations (see the next section). The
realization of this goal will require CAV analysis over a
broad interval of fixed vorticity, which may require DNS
data with higher resolution.

IV. CONCLUSION

The CAV field represents the statistical balance be-
tween vortex stretching and viscous smoothing in three-
dimensional turbulent flow, conditioned by the level of
fixed vorticity. This conditional balance is at the heart of
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small-scale turbulent motion. It was argued [3] that this
balance is the only exact information about two-point
vorticity statistics, which can be obtained from the
hierarchy of equations for the n-point PDF without
resorting to closures. Similar behavior is observed in a
variety of systems that have strong nonlinear interac-
tions, including strongly turbulent plasma. The balance
is topologically represented by the twisting component of
CAYV (stretching) and the hyperboloidal component
(smoothing). For locally isotropic turbulence the decom-
position in terms of scalars (8) depends on three argu-
ments: the distance between two points in turbulent flow,
the magnitude of vorticity in one point, and the corre-
sponding angle. The simple analytical model (11) only
qualitatively describes this dependence and gives the gen-
eral topological structure of CAV. So the first problem
for the future is to find a quantitative analytical descrip-
tion of CAV, which may require additional numerical ex-
periments. This analytical description is important not
only for understanding turbulence and other phenomena
that have strong nonlinear interactions, but also for a
subgrid-scale modeling in many applications.

One way to make large-eddy simulations consistent
with CAV fields is to introduce into the Navier-Stokes
equations (written in terms of vorticity) a vortex relaxa-
tion term:

=7 o/(x)=Q [ m(n)B(—r,8(x+1))d%] ,
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where
7 ~[2/3g—1/3Re~1/5

and

B;(x+r1)= [o(x+1)+k(r)Q;(r,0(x))] . (12)

1
1+«(r)
Here 7, is the relaxation time [4] that is associated with
“vortex strings,” Q is the solenoidal projection operator,
m and k are weighting coefficients that depend on the nu-
merical scheme, and & is an intermediate field that is
designed for a smooth relaxation. We see that detailed
information about the CAYV field over a broad range of
vorticity and distance is required for numerical simula-
tions. A similar relaxation effect can be introduced into
the Navier-Stokes equations written in terms of velocity,
but the physics is still based on vorticity. It is assumed
that the grid scale is of order of I, ~L Re3/!% [4], which
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gives a huge potential savings in the numerical workload
[6]. At this scale the most dangerous (numerically) non-
linear effects of vortex stretching and convection do not
produce a flux in the vorticity correlations [4]. Thus, we
can expect a relatively smooth connection between
numerics and modeling at the scale. We do not know yet
if the particular relaxation (12) will work, but in order to
test it we need a detailed (preferably analytical) descrip-
tion of the CAY field.
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FIG. 1. Conditionally averaged vorticity field. The colors indicate vorticity magnitude. The blue color corresponds to Q=0 and
the red color corresponds to (! =w,. The arrows indicate the direction of the vortex lines.



